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Mixing, Lyapunov instability, and the approach to equilibrium in a hard-sphere gas

Ch. Dellago and H. A. Posch
Institut für Experimentalphysik, Universita¨t Wien, Boltzmanngasse 5, A-1090 Wien, Austria

~Received 31 July 1996!

We present maximum Lyapunov exponentsl1 and related Kolmogorov-Sinai entropieshKS for a gas of hard
spheres at various densities. The time scales defined byl1 andhKS are compared with the collision time, the
decay time of typical autocorrelation functions, and the relaxation time of a one-particle distribution. At low
densities the Lyapunov timetl[1/l1 is much smaller than the collision timetc , whereas at high densities we
find tl@tc . We discuss consequences for kinetic theory and numerical simulations. The mixing properties in
phase space are investigated for the two-dimensional Lorentz gas. It is numerically verified that the
Kolmogorov-Sinai time tKS[1/hKS is the characteristic time for this relaxation process.
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Mixing in phase space is a necessary condition for
relaxation of a nonequilibrium state towards equilibrium a
therefore for statistical mechanics to apply@1#. Due to the
exponential instability characterized by a positi
Kolmogorov-Sinai entropyhKS , a number of initially close
phase points are eventually uniformly distributed over
energy surface. The characteristic time for this mixing p
cess in phase space is the Kolmogorov-Sinai ti
tKS51/hKS @2,3#. In order to relate this time to the typica
relaxation time of a nonequilibrium state and to decay tim
of equilibrium autocorrelation functions, we performed a s
ries of relaxation experiments on a hard sphere gas. S
experiments were pioneered by Alder and Wainwright
1958 @4#, and repeated by several authors since then@5,6#.

Consider a system ofN identical smooth hard sphere
with diameters and massm prepared with velocities equa
in magnitude but pointing in random directions. We moni
the time evolution of this nonequilibrium state by computi
the reduced single-particle distributionf (p,t) of the magni-
tudep5upu of the momenta.f (p,t) is obtained as an averag
over 1000 runs with different initial conditions. Starting fro
thed distribution at timet50, f (p,t) converges towards th
equilibrium Maxwell-Boltzmann distributionf 0(p). To de-
scribe the relaxation of this nonequilibrium state we use

H~ t !5E
0

`

f ~p,t !lnf ~p,t !dp, ~1!

which is similar to Boltzmann’sH function. However, Boltz-
mann’s originalH function involves the full one-particle dis
tribution function f (p,q,t).

Figure 1 showsDH[H(t)2H0 as a function oft/tc for
108 hard spheres at different densitiesr[N/V ranging from
r50.0001s23 to r51s23, wheretc is the mean time be
tween collisions of an individual particle.H(t) converges
monotonically towards its equilibrium valueH0. For all den-
sitiesDH(t/tc) has a universal behavior. Thus, at all den
ties, the collision timetc , which is also the decay time of
typical autocorrelation function, can be regarded as the
laxation time of this system.

We now turn to the question of how this relaxation rate
related to the maximum Lyapunov exponent and
551063-651X/97/55~1!/9~4!/$10.00
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Kolmogorov-Sinai entropy per particle. Krylov@2,3# envi-
sioned that a little phase volumeDG0 after a timet will be
spread over a region with a volumeDG t5DG0exp(hKSt).
Thus, after a time

t05
1

hKS
ln

1

DG0
~2!

DG t is of order 1, and the initial phase droplet is spread o
the whole phase space. Therefore, one might expect typ
relaxation times to be proportional to 1/hKS . It will be shown
in the following that this is not the case for the relaxation
the nonequilibrium state described above.

Figure 2 shows the maximum Lyapunov exponentl1, the
Kolmogorov-Sinai entropy per particlehKS /N and the colli-
sion raten[1/tc as a function ofn over a wide range of
densities for 108 hard spheres in a cubic simulation box w
periodic boundary conditions.l1, hKS , andn are all mea-
sured in units of (K/ms2N)1/2, whereK is the total kinetic
energy of the system. The Lyapunov exponents and
Kolomogorov-Sinai entropy are computed with a recen
developed variant of the standard algorithm of Bene
@7–9#.

FIG. 1. H(t)2H0 as a function oft/tc for a 108-sphere system
The densities range fromr51024s23 to 1s23. Each curve is ob-
tained by averaging over 1000 runs with different initial condition
R9 © 1997 The American Physical Society
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The most striking feature of these curves is a crosso
betweenl1 andn in the region of intermediate densities. A
high densities bothl1 and hKS /N are smaller thann,
whereas at low densitiesl1 andhKS /N are much larger than
n. In the low-density limit the collision timetc is inversely
proportional to the densityr, the maximum Lyapunov expo
nentl1 is proportional tour logru, and the ratio of Lyapunov
to collision times becomes

tl

tc
}

1

u logru
. ~3!

Hence,tl can become arbitrarily small with respect to t
collision time. The same is true fortKS51/hKS @9#. For high
densities we found@9# that the maximum Lyapunov expo
nent is proportional tonb with b'0.46, and

tl

tc
}

n

nb
'n0.54. ~4!

Thus, we find the two limits

lim
r→0

tl

tc
50, limr→rcp

tl

tc
5`, ~5!

wherercp is the density of close packing. Although a pos
tive Kolmogorov-Sinai entropy is crucial for the relaxatio
of a nonequilibrium state, it follows from Eq.~5! that neither
l1 norhKS can be regarded as the rate with which the sys
evolves towards equilibrium.

The Lyapunov timetl is a measure for the time the sy
tem needs to forget its past. Correspondingly,hKS measures
the rate at which information is produced. Iftl andtKS are
much smaller than the average collision time, subsequ
collisions are uncorrelated and the assumption of molec
chaos is valid. Thus,tl!tc marks the range of validity o
lowest-order kinetic theory~disregarding correlated colli
sions!.

As a check of this idea we calculated the velocity au
correlation functionc(t)[^vx(0)vx(t)& for different densi-

FIG. 2. n, l1, andhKS /N as a function of the collision rate fo
the 108-particle system. The vertical dotted lines denote the de
tiesr50.1s23, 0.4s23, and 1s23. All quantities are given in units
of ~K/ms2N!1/2.
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ties and considered its deviation from exponential behav
In Fig. 3 c(t) is shown for the densities
r50.01s23, 0.1s23, and 0.4s23, specially marked by the
vertical lines in Fig. 2, as a function oft/tc . The respective
ratios of the Lyapunov time to the collision time a
tl /tc50.12,0.38, and 1.07. For comparison, the Ensk
form of the velocity autocorrelation function,c(t)
5^vx

2&e22t/3tc @10#, is shown too. The horizontal dotted lin
denotes the numerical noise levelA2tv /3Ntrun, where
tv5*0

`^vx(t)vx(0)&dt/^vx
2&, and t run is the total simulation

time @11#. For r50.01s23 and 0.1s23 the deviation from
exponential behavior is small. Forr50.4s23, for which
tl /tc51.07, c(t) has a long-time tail and is exponenti
only for short times. Thus,c(t) is purely exponential only if
tl!tc , which means that the velocity of a particle is com
pletely decorrelated before it collides again. On the ot
hand, if tl>tc , correlations persist over many collision
and long-time tails appear.

Next we address the question whether the Lyapunov
stability limits the time for which autocorrelation function
can be accurately computed. Consider again the velocity
tocorrelation functionc(t). An initial error e0, due to an
inaccuracy of the integration algorithm or to comput
roundoff, is amplified after a timet to e t;e0exp(l1t). It is
tempting to assume thatc(t) becomes unreliable ife t be-
comes of order one. For a typical roundoff errore0'10215

with 64-bit floating point numbers@12# this happens after
t;35/l1. In Fig. 4 we showc(t) as a function oft/tl .
Again the horizontal dotted line marks the numerical no
level. Forr50.1s23 and 0.4s23 c(t) decreases below th
noise level before the critical timet;35/l is reached. How-
ever, no indication of the Lyapunov instability is observ
for r50.01s23, even for times much longer than 35/l. To
understand this behavior we note that in the dilute gas
collision times of an individual particle are distributed exp
nentially and very long straight paths are possible@13#. Over
the whole free path the velocities of the particles are co
pletely correlated and are not affected by the Lyapunov

si- FIG. 3. Velocity autocorrelation function of the 108-partic
system as a function of t/tc for the densities
r50.01s23, 0.1s23, and 0.4s23. The horizontal dotted line de
notes the numerical noise level. The autocorrelation functions
given in units ofK/Nm.
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55 R11MIXING, LYAPUNOV INSTABILITY, AND TH E . . .
stability of the system, because the only source of chaos
the elastic hard collisions. After timet a certain fraction of
the particles have not yet collided again and their veloci
are still completely correlated with their initial velocitie
These particles contribute to the nonvanishing value ofc(t)
even if t@tl . Hence,tl does not limit the time for which
c(t) can be accurately computed for systems with hard
teractions.

So far we have considered the relaxation of anonequilib-
rium single-body distributionof a many-body system to
wards equilibrium. What is the relevant relaxation time fo
many-body distribution f($pi%,$qi%,t) or, equivalently, the
mixing time in phase space? The numerical answer to
problem is far beyond present techniques, but we may
dress it for an essentially two-body problem, the tw
dimensional Lorentz gas@14,16#. This model consists of a
point particle moving in an infinite array of hard circula
scatterers located on the sites of a triangular lattice. Peri
boundaries restrict the problem to one hexagonal basis ce
the lattice. The wandering particle moves with constant
netic energy on straight lines and is elastically reflected
collisions with the scatterer. This model is equivalent to
two-particle system with periodic boundaries. The plan
Lorentz gas is both ergodic and mixing due to the dispers
effect of the convex scatterer, and the constant-energy
face is three dimensional.

We reduce the dimension of the phase space furthe
introducing the two-dimensional Poincare´ plane of the colli-
sion points (a,sinb) @15#. a is the angle between the positiv
x axis and the collision point on the surface of the scatte
andb is the angle of the incoming momentum with the no
mal vector at the collision point. The motion of the syste
generates a Poincare´ map of the (a,sinb) plane onto itself
mapping one collision point into the next.

We use this representation to perform a numerical re
ation experiment. First, we define a coarse graining of
phase space by dividing the Poincare´ plane intoN boxes of
equal size. Next one of the boxes is chosen at random
n phase points are uniformly distributed in the box. We f

FIG. 4. Velocity autocorrelation function of the 108-partic
system as a function of t/tl for the densities
r50.01s23, 0.1s23, and 0.4s23. The horizontal dotted line de
notes the numerical noise level. The autocorrelation functions
given in units ofK/Nm.
re

s

-

is
d-
-

ic
of
i-
t
a
r
g
r-

y

r,

-
e

nd
-

low this set of points from one collision to the next. Due
the Lyapunov instability of the system the points initial
located in one of the small boxes are spread more and m
over the whole plane. We monitor the time evolution of t
initial distribution by computing the function

Hk5(
i51

N

f i lnf i , ~6!

where the sum is over all boxes, andf i[ni /n. ni is the
number of phase points in thei th box. At every collision the
integerk is incremented by one. Thus,k defines a discrete
time t5ktc , wheretc is the mean time between collision
Initially all phase points are in one box andH(0)50. If the
system is equilibrated, all boxes contain an approximat
equal number of points andH(`)52 lnN. In Fig. 5 we show
H as a function ofk5t/tc for different densities ranging
from r50.002R23 to 0.5R23, whereR is the radius of the
scatterers. The Poincare´ plane was divided into 4003400
rectangular boxes, and 6.43105 phase points were followed
in time. The results forH are averaged over 80 differen
initial conditions. We compute also the Lyapunov expone
and the Kolmogorov-Sinai entropy for this system@16#.
Since there is only one positive Lyapunov exponentl1, the
Kolmogorov-Sinai entropy is equal tol1.

The time constants for the decay of theH functions, plot-
ted in Fig. 5 as a function oft/tc , differ vastly with density.
This indicates thattc is not relevant for this experiment. If
however,H is plotted as a function oft/tKS , wheretKS is
the Kolmogorov-Sinai time, all curves for different densiti
become very similar. This is shown in Fig. 6. It follows th
the Kolmogorov-Sinai time determines the time scale for
relaxation of the full many body distribution and, hence, f
the mixing in phase space.

According to Krylov the numberNt of boxes occupied by
the phase points initially concentrated in one single b
grows exponentially with timet5ktc ,

Nt5exp~hKSt !. ~7!

re

FIG. 5. H function for the two-dimensional Lorentz gas as
function of t/tc at various densities.
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If we assume that then phase points at timet are distributed
uniformly over theNt boxes, it follows thatf i51/Nt for the
occupied boxes, and

H~ t !52hKSt. ~8!

FIG. 6. H function for the two-dimensional Lorentz gas as
function of t/tKS at various densities. The full line denotes th
linear decay according to the Krylov picture. The coarse-grai
relaxation time is indicated by the vertical broken line.
s
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This relation is shown by the thick solid line in Fig 6. Obv
ously, the relaxation process comes to an end if the ph
points cover the whole Poincare´ plane. According to Eq.~7!
this happens for timest. t̄[1/hKSlnN, or, equivalently,
t/tKS5 lnN. This time t̄, which is the coarse-grained relax
ation time of the full many-body distribution, is indicated b
the vertical broken line in Fig. 6.H(t) deviates from the
linear decay~8! if t exceedst̄. Shortly after,H(t) reaches its
equilibrium value. These results are in excellent agreem
with the Krylov picture of the mixing process in phase spa

Our simulation results for hard sphere systems dem
strate that the relaxation of the one-body distribution fun
tion ~or its moments! and the mixing in phase space occ
with different time scales. In the first case the relevant rel
ation time is given by the collision timetc in agreement with
kinetic theory. In the second case the Kolmogorov-Sinai
tropy determines the characteristic time scale.
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