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Mixing, Lyapunov instability, and the approach to equilibrium in a hard-sphere gas

Ch. Dellago and H. A. Posch
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We present maximum Lyapunov exponekisand related Kolmogorov-Sinai entropiegg for a gas of hard
spheres at various densities. The time scales defined, landhy s are compared with the collision time, the
decay time of typical autocorrelation functions, and the relaxation time of a one-particle distribution. At low
densities the Lyapunov tims =1/\, is much smaller than the collision timg, whereas at high densities we
find ,>7.. We discuss consequences for kinetic theory and numerical simulations. The mixing properties in
phase space are investigated for the two-dimensional Lorentz gas. It is numerically verified that the
Kolmogorov-Sinai time m¢s=1/hys Iis the characteristic time for this relaxation process.
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PACS numbsdis): 05.45+b, 02.70.Ns, 05.26-y

Mixing in phase space is a necessary condition for thékolmogorov-Sinai entropy per particle. Krylo\2,3] envi-
relaxation of a nonequilibrium state towards equilibrium andsioned that a little phase volumel', after a timet will be
therefore for statistical mechanics to appl). Due to the spread over a region with a volum&l';=AT jexphyd).
exponential instability characterized by a positive Thus, after a time
Kolmogorov-Sinai entropyks, a number of initially close
phase points are eventually uniformly distributed over the 1 | 1 5
energy surface. The characteristic time for this mixing pro- to_@ "AT, @
cess in phase space is the Kolmogorov-Sinai time
Tks= 1/hgs [2,3]. In order to relate this time to the typical AT, is of order 1, and the initial phase droplet is spread over
relaxation time of a nonequilibrium state and to decay timeshe whole phase space. Therefore, one might expect typical
of equilibrium autocorrelation functions, we performed a se-relaxation times to be proportional tohl/s. It will be shown
ries of relaxation experiments on a hard sphere gas. Sudh the following that this is not the case for the relaxation of
experiments were pioneered by Alder and Wainwright inthe nonequilibrium state described above.

1958[4], and repeated by several authors since {l38. Figure 2 shows the maximum Lyapunov expongqntthe

Consider a system oN identical smooth hard spheres Kolmogorov-Sinai entropy per particls/N and the colli-
with diameteroc and massn prepared with velocities equal sion ratev=1/7, as a function ofy over a wide range of
in magnitude but pointing in random directions. We monitor densities for 108 hard spheres in a cubic simulation box with
the time evolution of this nonequilibrium state by computing periodic boundary conditions.,, hxs, and » are all mea-
the reduced single-particle distributidiip,t) of the magni-  sured in units of K/ma®N)¥2, whereK is the total kinetic
tudep=|p| of the momentaf (p,t) is obtained as an average energy of the system. The Lyapunov exponents and the
over 1000 runs with different initial conditions. Starting from Kolomogorov-Sinai entropy are computed with a recently
the § distribution at timet=0, f(p,t) converges towards the developed variant of the standard algorithm of Benettin
equilibrium Maxwell-Boltzmann distributiorig(p). To de-  [7-9].
scribe the relaxation of this nonequilibrium state we use

H<t>=f:up,t)mf(p,t)dp, 1)

L T T I T

which is similar to Boltzmann’$l function. However, Boltz-
mann’s originaH function involves the full one-particle dis-
tribution functionf(p,q,t).

Figure 1 showsAH=H(t)—H, as a function ot/ for
108 hard spheres at different densitigs N/V ranging from
p=0.0001"2 to p=10"3, wherer, is the mean time be-
tween collisions of an individual particléd(t) converges
monotonically towards its equilibrium valug,. For all den-
sitiesAH(t/ ;) has a universal behavior. Thus, at all densi-
ties, the collision timer., which is also the decay time of a t/7.
typical autocorrelation function, can be regarded as the re-
laxation time of this system. FIG. 1. H(t)— H, as a function of/ 7, for a 108-sphere system.

We now turn to the question of how this relaxation rate isThe densities range from=10"*c"2 to 1o~ 2. Each curve is ob-
related to the maximum Lyapunov exponent and thetained by averaging over 1000 runs with different initial conditions.
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FIG. 2. v, A1, andhyg/N as a function of the collision rate for FIG. 3. Velocit N lation functi f the 108-particl
the 108-particle system. The vertical dotted lines denote the densi- - 9. Velocily autocorrefation function of the -particie

tiesp=0.103, 0.403, and I~ 3. All quantities are given in units SYSteM as  a function  of t/r for the depsities
of (lg/mgzN)uz a g p=0.010"2, 0.153, and 0.4 3. The horizontal dotted line de-

notes the numerical noise level. The autocorrelation functions are
given in units of K/Nm.

The most striking feature of these curves is a crossover
between\; and v in the region of intermediate densities. At _ _ . _ )
high densities both\; and hys/N are smaller thanw, ties and considered |ts' deviation from exponential behgwor.
whereas at low densities, andhs/N are much larger than 1" Fig. 3 c(t) is  shown for the densities
v. In the low-density limit the collision timer is inversely ~P=0.0l0", 0.107, and 0.4 ~, specially marked by the
proportional to the density, the maximum Lyapunov expo- vertical lines in Fig. 2, as a function ofr;. The respective
nent\, is proportional td plogp|, and the ratio of Lyapunov ratios of the Lyapunov time to the collision time are

to collision times becomes 7 /7.=0.12,0.38, and 1.07. For comparison, the Enskog-
form of the velocity autocorrelation function,c(t)
n 1 =(v2)e 2?7 [10], is shown too. The horizontal dotted line
T_coc||09P|' 3 denotes the numerical noise level27,/3Nt,,,, Where

7= 5{vy(1)vy(0))dt/(v2), andt,,, is the total simulation
Hence,r, can become arbitrarily small with respect to thetime [11]. For p=0.010"> and 0.2 the deviation from
collision time. The same is true fogs= 1/hys[9]. For high  exponential behavior is small. Fgr=0.40"3, for which
densities we found9] that the maximum Lyapunov expo- r, /7,=1.07, c(t) has a long-time tail and is exponential

nent is proportional to® with b~0.46, and only for short times. Thus;(t) is purely exponential only if
7 <7., Which means that the velocity of a patrticle is com-
Dt ~ /054 4) pletely decorrelated before it collides again. On the other
Te P ' hand, if ,= 7., correlations persist over many collisions
and long-time tails appear.
Thus, we find the two limits Next we address the question whether the Lyapunov in-
stability limits the time for which autocorrelation functions
I|m3=0, lim ™ (5) can be accurately computed. Consider again the velocity au-

tocorrelation functionc(t). An initial error €3, due to an
inaccuracy of the integration algorithm or to computer
wherep., is the density of close packing. Although a posi- roundoff, is amplified after a time to &~ egexp\at). It is
tive Kolmogorov-Sinai entropy is crucial for the relaxation tempting to assume that(t) becomes unreliable i be-
of a nonequilibrium state, it follows from E¢p) that neither comes of order one. For a typical roundoff eregr=10"1°
N1 norhgs can be regarded as the rate with which the systemwith 64-bit floating point number§12] this happens after
evolves towards equilibrium. t~35/M\;. In Fig. 4 we showc(t) as a function oft/, .
The Lyapunov timer, is a measure for the time the sys- Again the horizontal dotted line marks the numerical noise
tem needs to forget its past. Correspondinglys measures level. Forp=0.10"2 and 0.4~ 2 c(t) decreases below the
the rate at which information is produced.7f and 7¢s are  noise level before the critical timee~ 35/\ is reached. How-
much smaller than the average collision time, subsequergver, no indication of the Lyapunov instability is observed
collisions are uncorrelated and the assumption of moleculdior p=0.010"3, even for times much longer than 35/To
chaos is valid. Thusr, <7, marks the range of validity of understand this behavior we note that in the dilute gas the
lowest-order kinetic theory(disregarding correlated colli- collision times of an individual particle are distributed expo-
sions. nentially and very long straight paths are possfiilg]. Over
As a check of this idea we calculated the velocity auto-the whole free path the velocities of the particles are com-
correlation functionc(t)=(v,(0)v,(t)) for different densi- pletely correlated and are not affected by the Lyapunov in-
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FIG. 4. Velocity autocorrelation function of the 108-particle = FIG. 5. H function for the two-dimensional Lorentz gas as a
system as a function of t/7, for the densities function oft/7, at various densities.
p=0.010"3, 0.10 3, and 0.4 3. The horizontal dotted line de-
notes the numerical noise level. The autocorrelation functions are

given in units ofk/Nm. low this set of points from one collision to the next. Due to
the Lyapunov instability of the system the points initially

tability of th N b th | f ch located in one of the small boxes are spread more and more

tsha III th_) he;ys ﬁm ec;aa\t;tse t'r(ralleon y S?L.”C? N t'C aofs alsver the whole plane. We monitor the time evolution of the
€ elastic hard collisions. ARer imea certain fraction ot - jiia) gistribution by computing the function

the particles have not yet collided again and their velocities

are still completely correlated with their initial velocities.

These particles contribute to the nonvanishing value(bf N

even ift>r, . Hence,r, does not limit the time for which H= 2, fiinf;, (6)
c(t) can be accurately computed for systems with hard in- =1

teractions.

So far we have considered the relaxation efomequilib-  \here the sum is over all boxes, afig=n;/n. n; is the
rium single-body distributiorof a many-body system to- number of phase points in tlith box. At every collision the
wards equilibrium. What is the relevant relaxation time for ajntegerk is incremented by one. Thuk, defines a discrete
many-body distribution ({p;}.{q;}.t) or, equivalently, the timet=kr,, wherer, is the mean time between collisions.
mixing time in phase space? The numerical answer to thigitially all phase points are in one box akt{0)=0. If the
problem is far beyond present techniques, but we may adsystem is equilibrated, all boxes contain an approximately
dress it for an essentially two-body problem, the two-equal number of points artd(=) = —InN. In Fig. 5 we show
dimensional Lorentz gafl4,16. This model consists of a | a5 a function ofk=t/7, for different densities ranging
point particle moving in an infinite array of hard circular from p=0.00R"2 to 0.5R 3, whereR is the radius of the
scatterers located on the sites of a triangular lattice. Periodigeatterers. The Poincamane was divided into 400400
boundaries restrict the problem to one hexagonal basis cell g ctangular boxes, and 64.0° phase points were followed
the lattice. The wandering particle moves with constant Ki-, time. The results foH are averaged over 80 different
netic energy on straight lines and is elastically reflected ajyjtia| conditions. We compute also the Lyapunov exponents
collisions with the scatterer. This model is equivalent 10 83nq the Kolmogorov-Sinai entropy for this systeib6].

two-particle system with periodic boundaries. The planargjnce there is only one positive Lyapunov exponeqtthe
Lorentz gas is both ergodic and mixing due to the disPerSinQ(olmogorov-Sinai entropy is equal to;.

effect of the convex scatterer, and the constant-energy sur- The time constants for the decay of tHefunctions, plot-

face is three dimensional. ted in Fig. 5 as a function df ., differ vastly with density.

_We rt_aduce the d'mens"?” of the_ phase space furth_er B¥his indicates that is not relevant for this experiment. If,
introducing the two-dimensional Poincgptane of the colli- however,H is plotted as a function off 7¢s, whererys is

sion points ,sing) [15]. « is the angle between the positive yhe 1 5imogorov-Sinai time, all curves for different densities

x axis and the collision point on the surface of the scatterery.ome very similar. This is shown in Fig. 6. It follows that

and is the angle of the incoming momentum with the nor- e K gimogorov-Sinai time determines the time scale for the
mal vector at the collision point. The motion of the Systemg|ayation of the full many body distribution and, hence, for
generates a Poincareap of the ,sing) plane onto itself 4,4 mixing in phase space.

mapping one collision point into the next. _ According to Krylov the numbeN, of boxes occupied by
‘We use this representation to perform a numerical relaxg,e phase points initially concentrated in one single box
ation experiment. First, we define a coarse graining of thegrows exponentially with time=kr
c

phase space by dividing the Poincaane intoN boxes of
equal size. Next one of the boxes is chosen at random and
n phase points are uniformly distributed in the box. We fol- N;=exp(hgst). (7)
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This relation is shown by the thick solid line in Fig 6. Obvi-
ously, the relaxation process comes to an end if the phase
points cover the whole Poincaptane. According to Eq(7)
this happens for times>7=1/hydnN, or, equivalently,
t/ 7«s=InN. This time 7, which is the coarse-grained relax-
ation time of the full many-body distribution, is indicated by
the vertical broken line in Fig. 6H(t) deviates from the
linear decay(8) if t exceedsr. Shortly afterH(t) reaches its
equilibrium value. These results are in excellent agreement
with the Krylov picture of the mixing process in phase space.
Our simulation results for hard sphere systems demon-
strate that the relaxation of the one-body distribution func-
tion (or its moments and the mixing in phase space occur
with different time scales. In the first case the relevant relax-
ation time is given by the collision time, in agreement with

FIG. 6. H function for the two-dimensional Lorentz gas as a kinetic theory. In the second case the Kolmogorov-Sinai en-

function of t/7«g at various densities. The full line denotes the tropy determines the characteristic time scale.
linear decay according to the Krylov picture. The coarse-grained

relaxation time is indicated by the vertical broken line.

If we assume that the phase points at timeare distributed
uniformly over theN, boxes, it follows thaf; = 1/N, for the
occupied boxes, and

H(t)=—hgst. (8)
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